## Form C: Type Test Verification Report

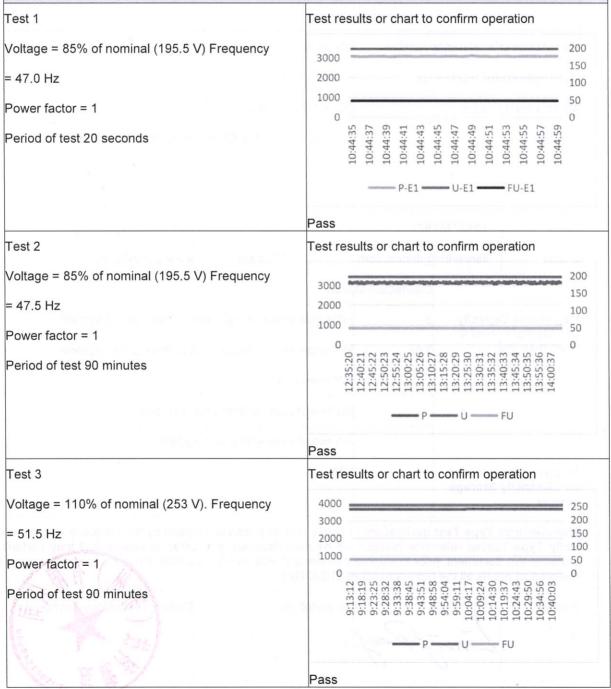
All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of EREC G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA) Type Test Register.

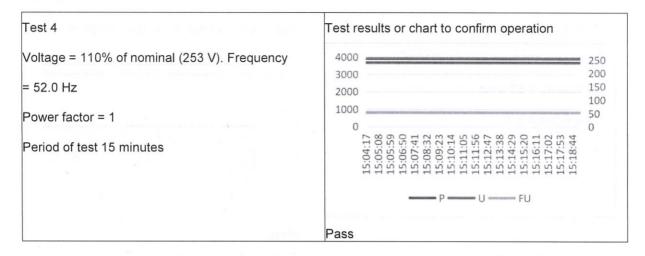
If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA Type Test Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted.

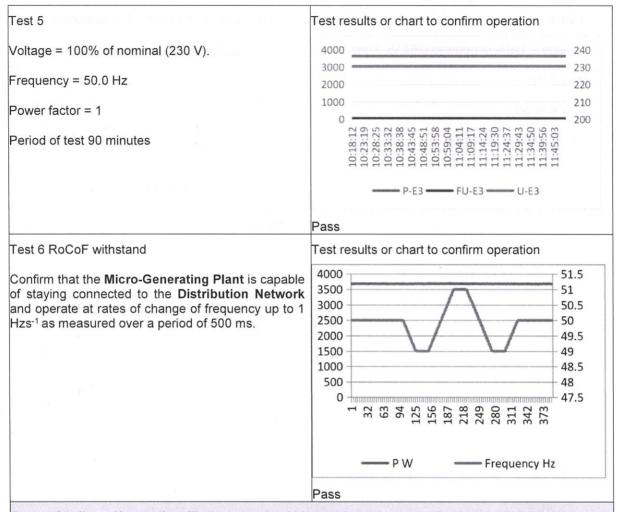
| Manufactu                                               | rer's referenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e number              | DN1H-3KT              | DN1H-3KTL, DN1H-3.68KTL                                       |                             |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------------------------------------------------|-----------------------------|--|--|--|--|
| Micro-gene                                              | erator technol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ogy                   | Hybrid Inve           | Hybrid Inverter                                               |                             |  |  |  |  |
| Manufactu                                               | rer name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the second second | Dunext Ted            | chnology Suzh                                                 | ou Co., Ltd.                |  |  |  |  |
| Address                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Building 2,           | Building 2, No.1008 Xihong Road, Wuzhong District, Suzhou Cit |                             |  |  |  |  |
| Tel                                                     | 1812776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1521                  | E piky <sup>e</sup> s | Fax                                                           | 1                           |  |  |  |  |
| E-mail                                                  | liaojianlin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | @dunext.c             | om                    | Web site                                                      | www.dunext.com              |  |  |  |  |
| CHANGE BY                                               | Control of the contro | Connectio             | n Option              | C. Bullet                                                     | A C CS TOTHINGS IN SECTION  |  |  |  |  |
| Registered                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                     | kW single             | phase, single,                                                | split or three phase system |  |  |  |  |
| use separati<br>more than o<br>connection               | one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.68                  | kW single             | phase, single,                                                | split or three phase system |  |  |  |  |
| CONTROLION                                              | option.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | kW three p            | hase                                                          | 8                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0000-10             | kW two ph             | ases in three p                                               | hase system                 |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | kW two ph             | ases split phas                                               | se system                   |  |  |  |  |
| Energy storage capacity for Electricity Storage devices |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh                   |                       | L reall                                                       |                             |  |  |  |  |

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above Fully Type Tested reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.


Signed
On behalf of
Dunext Technology Suzhou Go. Ltd.

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.


Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.


Operating Range: This test should be carried out as specified in A.1.2.10.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.



ENA Engineering Recommendation G98 Issue 1 Amendment 7 2022 Page 48





**Power Quality – Harmonics**: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

|                                                            | (rp                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | 3                                     | kW                                     |                                             |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------|
| NA End<br>For 3-1<br>sue 3-1<br>measu<br>harmoi<br>replica | pineering R<br>hase <b>Micr</b><br>menomen<br>rements ar<br>nics are no<br>te this sect | Recommendation of a service of the commendation of the commendation of the commendation of the commendation with the commendation of the commendat | n G98<br>tick this box if h<br>all three phases<br>ach phase, plea<br>ults for each ph | narmonic<br>s. If the<br>ase<br>nase. |                                        |                                             |
| Harm<br>onic                                               |                                                                                         | % of Registere<br>Capacity <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | of Registered apacity                 |                                        | 9                                           |
|                                                            | Measure<br>Amps                                                                         | d Value MV in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured in Amps                                                                       | Value MV                              | Limit in BS EN<br>61000-3-2 in<br>Amps | Higher limit for odd harmonics 21 and above |
| 2                                                          | 0.002                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.004                                                                                  | 70.00                                 | 1.080                                  |                                             |
| 3                                                          | 0.123<br>9                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.138<br>6                                                                             |                                       | 2.300                                  |                                             |
| 4                                                          | 0.002                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                  | 1 0.5                                 | 0.430                                  |                                             |
| 5                                                          | 0.075<br>8                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.070                                                                                  | 1 1100                                | 1.140                                  |                                             |
| 6                                                          | 0.003                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003<br>6                                                                             |                                       | 0.300                                  |                                             |
| 7                                                          | 0.058<br>8                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.058<br>6                                                                             |                                       | 0.770                                  |                                             |
| 8                                                          | 0.002                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003<br>5                                                                             | 1200                                  | 0.230                                  |                                             |
| 9                                                          | 0.049                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.051                                                                                  | 200.0                                 | 0.400                                  |                                             |
| 10                                                         | 0.003                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                  |                                       | 0.184                                  |                                             |
| 11                                                         | 0.040<br>7                                                                              | 2.11.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.038                                                                                  |                                       | 0.330                                  |                                             |
| 12                                                         | 0.004                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002<br>7                                                                             | Lasin                                 | 0.153                                  |                                             |
| 13                                                         | 0.040                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.039<br>4                                                                             | 20,000                                | 0.210                                  |                                             |
| 14                                                         | 0.002<br>9                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002<br>5                                                                             | 10000                                 | 0.131                                  |                                             |
| 15                                                         | 0.038                                                                                   | = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.038                                                                                  | 50010                                 | 0.150                                  |                                             |
| 16                                                         | 0.003                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001                                                                                  | 50,00                                 | 0.115                                  |                                             |

<sup>&</sup>lt;sup>2</sup> See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

| 17 | 0.036      |                      | 0.033      | و الأديا  | Major.               | 0.132 | 103   |
|----|------------|----------------------|------------|-----------|----------------------|-------|-------|
| 18 | 0.003<br>6 | e                    | 0.002      | e. e. b   | DAUR . 15            | 0.102 |       |
| 19 | 0.033      | 19.0                 | 0.030<br>6 |           |                      | 0.118 |       |
| 20 | 0.002      | 120 7                | 0.001      |           | 0                    | 0.092 |       |
| 21 | 0.024<br>5 |                      | 0.023      |           |                      | 0.107 | 0.160 |
| 22 | 0.002      |                      | 0.003<br>5 |           |                      | 0.084 |       |
| 23 | 0.017<br>7 |                      | 0.015<br>0 |           |                      | 0.098 | 0.147 |
| 24 | 0.003      |                      | 0.002<br>5 |           | , 2                  | 0.077 |       |
| 25 | 0.008      | 11                   | 0.006      |           |                      | 0.090 | 0.135 |
| 26 | 0.005      | _ VE 0               | 0.003      |           |                      | 0.071 |       |
| 27 | 0.006      | 2.50                 | 0.005      |           |                      | 0.083 | 0.124 |
| 28 | 0.003<br>5 | a61 C                | 0.002      |           |                      | 0.066 |       |
| 29 | 0.002      | 1 62 0               | 0.006      |           | 1 1 1 1 1 1 1        | 0.078 | 0.117 |
| 30 | 0.002      | 561.0                | 0.003      |           |                      | 0.061 |       |
| 31 | 0.002      | Ves a                | 0.003      |           | 5                    | 0.073 | 0.109 |
| 32 | 0.003      | 11.00                | 0.003      |           |                      | 0.058 |       |
| 33 | 0.004      |                      | 0.002      |           |                      | 0.068 | 0.102 |
| 34 | 0.002      | erro                 | 0.002      |           |                      | 0.054 |       |
| 35 | 0.002<br>7 |                      | 0.003      |           |                      | 0.064 | 0.096 |
| 36 | 0.004<br>7 |                      | 0.003      |           |                      | 0.051 |       |
| 37 | 0.004      | 220 0222<br>220 0222 | 0.004      | t colsa s | yourself<br>estimate | 0.061 | 0.091 |

| 38             | 0.001                                                                         | Tr. a                                  | 0.006<br>3     |                    |           | 0.048                                  |                                             |
|----------------|-------------------------------------------------------------------------------|----------------------------------------|----------------|--------------------|-----------|----------------------------------------|---------------------------------------------|
| 39             | 0.003<br>7                                                                    |                                        | 0.003          |                    | Linc<br>e | 0.058                                  | 0.087                                       |
| 40             | 0.004                                                                         | C                                      | 0.001<br>5     |                    | 7-93      | 0.046                                  |                                             |
| Micro          | -generator rati                                                               | ing per phase                          |                | 3.68               |           | kW                                     | R00.01 81                                   |
| measi<br>harmo | phase <b>Micro-g</b><br>urements are identics are not identicate this section | lentical for all t<br>entical for each | hree pha       | ses. If the        |           | = <sub>22</sub> = 1                    |                                             |
| Harm<br>onic   |                                                                               | of Registered<br>acity <sup>3</sup>    | 1000           | % of Reg<br>Capaci |           |                                        | Davident Brill                              |
|                | Measured V<br>Amps                                                            | alue MV in                             | Measur<br>Amps | ed Value           | MV in     | Limit in BS EN<br>61000-3-2 in<br>Amps | Higher limit for odd harmonics 21 and above |
| 2              | 0.003                                                                         | 201 7                                  | 0.006          |                    |           | 1.080                                  |                                             |
| 3              | 0.274                                                                         | 205                                    | 0.289          |                    | 5         | 2.300                                  |                                             |
| 4              | 0.003                                                                         |                                        | 0.003<br>9     |                    |           | 0.430                                  |                                             |
| 5              | 0.173<br>8                                                                    | .54                                    | 0.166<br>0     |                    |           | 1.140                                  |                                             |
| 6              | 0.002                                                                         | *                                      | 0.002<br>7     |                    |           | 0.300                                  |                                             |
| 7              | 0.114                                                                         |                                        | 0.108<br>6     |                    |           | 0.770                                  |                                             |
| 8              | 0.002                                                                         | 2000                                   | 0.003          |                    | 5         | 0.230                                  |                                             |
| 9              | 0.085                                                                         | 190.0                                  | 0.085          |                    |           | 0.400                                  |                                             |
| 10             | 0.003                                                                         | 800.0                                  | 0.002          |                    |           | 0.184                                  |                                             |
| 11             | 0.073<br>7                                                                    | 136.6                                  | 0.071<br>5     |                    |           | 0.330                                  |                                             |
| 12             | 0.002                                                                         |                                        | 0.002          |                    | 7.17      | 0.153                                  |                                             |

<sup>&</sup>lt;sup>3</sup> See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

| 13 | 0.064      |                    | 8100                                    | 0.062<br>4 |                                  | 0.210 |       |
|----|------------|--------------------|-----------------------------------------|------------|----------------------------------|-------|-------|
| 14 | 0.003      |                    |                                         | 0.003<br>5 | 4.00                             | 0.131 |       |
| 15 | 0.056      |                    |                                         | 0.056<br>7 | 200                              | 0.150 |       |
| 16 | 0.004      |                    | p <sup>art</sup> y                      | 0.003<br>6 | 4                                | 0.115 |       |
| 17 | 0.046      |                    |                                         | 0.049      |                                  | 0.132 |       |
| 18 | 0.002      |                    |                                         | 0.002<br>7 | 82 N p = 52 p 3 E                | 0.102 |       |
| 19 | 0.040      |                    |                                         | 0.039      | op?~LD                           | 0.118 |       |
| 20 | 0.003      | ×11 **             | 2 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.002<br>9 | 201 JA                           | 0.092 |       |
| 21 | 0.033      |                    | 981                                     | 0.031<br>6 | 5010                             | 0.107 | 0.160 |
| 22 | 0.001      |                    | and C                                   | 0.002      |                                  | 0.084 |       |
| 23 | 0.026<br>5 |                    | 18.                                     | 0.025<br>9 |                                  | 0.098 | 0.147 |
| 24 | 0.004      |                    | C21                                     | 0.004      | 1000                             | 0.077 |       |
| 25 | 0.020      |                    | 100                                     | 0.019      | GO D                             | 0.090 | 0.135 |
| 26 | 0.003      |                    |                                         | 0.004      | 2 in a                           | 0.071 |       |
| 27 | 0.015<br>8 |                    | Prest.                                  | 0.017      | 8.N/0                            | 0.083 | 0.124 |
| 28 | 0.003      |                    | 0.810                                   | 0.005<br>5 | 325 L                            | 0.066 |       |
| 29 | 0.012      |                    | ent 2                                   | 0.013<br>8 | 577 <u>0</u>                     | 0.078 | 0.117 |
| 30 | 0.002      |                    | met o                                   | 0.004      | 100 m                            | 0.061 |       |
| 31 | 0.008      |                    | 19-0                                    | 0.011      | = : : :                          | 0.073 | 0.109 |
| 32 | 0.002<br>5 |                    | -                                       | 0.003      |                                  | 0.058 |       |
| 33 | 0.007      | giotared<br>ngeWho |                                         | 0.007      | in en element<br>in en en elemen | 0.068 | 0.102 |

ENA Engineering Recommendation G98 Issue 1 Amendment 7 2022 Page 54

| 34 | 0.003<br>4 |      | 0.002<br>6 | 1200 |            | 0.054 |       |
|----|------------|------|------------|------|------------|-------|-------|
| 35 | 0.005      |      | 0.004      |      | riin, X. e | 0.064 | 0.096 |
| 36 | 0.003<br>5 |      | 0.002      |      |            | 0.051 |       |
| 37 | 0.007      | - 65 | 0.006      | -550 |            | 0.061 | 0.091 |
| 38 | 0.003<br>5 |      | 0.005      |      |            | 0.048 |       |
| 39 | 0.003      |      | 0.004      |      |            | 0.058 | 0.087 |
| 40 | 0.005      | <br> | 0.003      |      |            | 0.046 |       |

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Additional comments:

**Power Quality – Voltage fluctuations and Flicker**: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is  $0.4~\Omega$  for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and  $0.24~\Omega$  for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is  $0.98~\mathrm{or~above}$ ):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

| Test start date                                   | Apr   | il 1, 2 | 024         |            | Test<br>end<br>date          | April      | 1, 202 | 4    |             |                     | 10.0                    |  |  |
|---------------------------------------------------|-------|---------|-------------|------------|------------------------------|------------|--------|------|-------------|---------------------|-------------------------|--|--|
| Test location                                     | Suzi  | nou Na  | ational Hi- | Tech Distr | ech District, Suzhou, China. |            |        |      |             |                     | ESUS (                  |  |  |
|                                                   | Star  | ting    |             |            | Stopp                        | ing        | 400 n  |      |             | Runni               | ng                      |  |  |
|                                                   | d(m   | ax)     | d(c)        | d(t)       | d(max                        | <b>(</b> ) | d(c)   |      | d(t)        | Pst                 | P <sub>It</sub> 2 hours |  |  |
| Measured<br>Values at<br>test<br>impedance        | 0.629 | %       | 0.09%       | 0%         | 0.56%                        |            | 0.08%  | 6    | 0%          | 0.17                | 0.14                    |  |  |
| Normalised<br>to standard<br>impedance            | 0.629 | %       | 0.09%       | 0%         | 0.56%                        |            | 0.08%  | 6    | 0%          | 0.17                | 0.14                    |  |  |
| Normalised<br>to required<br>maximum<br>impedance | 0.62  | %       | 0.09%       | 0%         | 0.56%                        | is d       | 0.08%  | 6    | 0%          | 0.17                | 0.14                    |  |  |
| Limits set<br>under BS EN<br>61000-3-11           | 4%    |         | 3.3%        | 3.3%       | 4%                           |            | 3.3%   | 6    | 3.3%        | 1.0                 | 0.65                    |  |  |
|                                                   |       |         |             |            |                              |            |        |      |             |                     |                         |  |  |
| Test<br>Impedance                                 | R     | 0.4     |             | Ω          |                              |            | Х      | 0.25 | 5           |                     | Ω                       |  |  |
| Standard<br>Impedance                             | R     | 0.24    |             | Ω          | parant so                    |            | X      | 0.15 | 5 *<br>25 ^ | 10°° -              | Ω                       |  |  |
| Maximum<br>Impedance                              | R     | 0.4     | SUPERIOR    | Ω          | etend 8                      |            | x 0.25 |      | 5           | ek veg<br>1865an le | Ω                       |  |  |

<sup>\*</sup>Applies to three phase and split single phase Micro-generators. Delete as appropriate.

Power quality – DC injection: This test should be carried out in accordance with A 1.3.4 as applicable.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / base current

where the base current is the Registered Capacity (W) / 230 V. The % DC injection should not be greater than 0.25%.

<sup>^</sup> Applies to single phase Micro-generators and Micro-generators using two phases on a three phase system. Delete as appropriate.

**Power Factor Limit** 

>0.95

| level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20%                                         | 50%                                                                               | 75%                                                               | 100%                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recorded<br>DC value<br>in Amps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0071                                      | 0.0081                                                                            | 0.0097                                                            | 0.0045                                                                                                                                                        |
| as % of<br>rated AC<br>current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05%                                       | 0.06%                                                                             | 0.07%                                                             | 0.03%                                                                                                                                                         |
| Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25%                                       | 0.25%                                                                             | 0.25%                                                             | 0.25%                                                                                                                                                         |
| 3.68K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | THE DIT                                     | 2F 7 64                                                                           | ,                                                                 |                                                                                                                                                               |
| Test power<br>level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20%                                         | 50%                                                                               | 75%                                                               | 100%                                                                                                                                                          |
| Recorded<br>DC value in<br>Amps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0028                                      | 0.0049                                                                            | 0.0088                                                            | 0.0080                                                                                                                                                        |
| as % of<br>rated AC<br>current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02%                                       | 0.03%                                                                             | 0.05%                                                             | 0.05%                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                   |                                                                   |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25%                                       | 0.25%                                                                             | 0.25%                                                             | 0.25%                                                                                                                                                         |
| Power Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lity – Powe<br>e levels an                  | er factor: This tes<br>d at Registered C<br>o be maintained w                     | t shall be car<br>capacity and<br>vithin ±1.5%                    | rried out in accordance with A.1.3.2 and A.2.3.2 at the measured <b>Power Factor</b> must be greater than of the stated level during the test.                |
| Power Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lity – Powe<br>e levels an                  | er factor: This tes<br>d at Registered C                                          | t shall be car                                                    | rried out in accordance with A.1.3.2 and A.2.3.2 at I the measured <b>Power Factor</b> must be greater than                                                   |
| Power Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lity – Powe<br>e levels an<br>s. Voltage t  | er factor: This tes<br>d at Registered C<br>o be maintained w                     | t shall be car<br>capacity and<br>vithin ±1.5%                    | rried out in accordance with A.1.3.2 and A.2.3.2 at the measured <b>Power Factor</b> must be greater than of the stated level during the test.                |
| Power Qua<br>three voltag<br>0.95 to pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lity – Powe<br>e levels an<br>s. Voltage to | er factor: This tes<br>d at Registered C<br>o be maintained w<br>216.2 V          | t shall be can<br>capacity and<br>vithin ±1.5%                    | rried out in accordance with A.1.3.2 and A.2.3.2 at I the measured <b>Power Factor</b> must be greater than of the stated level during the test.  253 V       |
| Power Qual three voltage 0.95 to pass  Measured voltage of the pass of the pas | lity – Powe<br>e levels an<br>s. Voltage to | er factor: This tes<br>d at Registered Co<br>be maintained w<br>216.2 V<br>0.9984 | t shall be car<br>capacity and<br>vithin ±1.5%<br>230 V<br>0.9985 | rried out in accordance with A.1.3.2 and A.2.3.2 at the measured <b>Power Factor</b> must be greater than of the stated level during the test.  253 V  0.9985 |
| Power Qual<br>three voltage<br>0.95 to pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lity – Powe<br>e levels an<br>s. Voltage to | er factor: This tes<br>d at Registered Co<br>be maintained w<br>216.2 V<br>0.9984 | t shall be car<br>capacity and<br>vithin ±1.5%<br>230 V<br>0.9985 | rried out in accordance with A.1.3.2 and A.2.3.2 at the measured <b>Power Factor</b> must be greater than of the stated level during the test.  253 V  0.9985 |

**Protection – Frequency tests:** These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

>0.95

>0.95

| Function | Setting   |               | Trip test |               | "No trip tests"   |                 |  |
|----------|-----------|---------------|-----------|---------------|-------------------|-----------------|--|
|          | Frequency | Time<br>delay | Frequency | Time<br>delay | Frequency /time   | Confirm no trip |  |
| U/F      | 48.0 Hz   | 0.5 s         | 47.96 Hz  | 0.507 s       | 48.2 Hz<br>25 s   | no trip         |  |
|          |           |               | XSO 6     | o uzra        | 47.8 Hz<br>0.45 s | no trip         |  |
| O/F      | 52 Hz     | 1.0 s         | 52.03 Hz  | 1.01 s        | 51.8 Hz<br>120 s  | no trip         |  |
|          |           |               |           |               | 52.2 Hz<br>0.98 s | no trip         |  |

Note. For frequency trip tests the frequency required to trip is the setting  $\pm$  0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting  $\pm$  0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

And the second of the second o

. To trade it once, guide for a reserve to the content of the street of a second or the street of a second of the street of the

**Protection – Voltage tests:** These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

| Function    | Setting |               | Trip test |               | "No trip tests" | "No trip tests" |  |  |
|-------------|---------|---------------|-----------|---------------|-----------------|-----------------|--|--|
|             | Voltage | Time<br>delay | Voltage   | Time<br>delay | Voltage /time   | Confirm no trip |  |  |
| U/V stage 1 | 195.5 V | 3 s           | 194.7V    | 3.02 s        | 199.5 V<br>5 s  | no trip         |  |  |
| U/V stage 2 | 138 V   | 2 s           | 136.5 V   | 2.01 s        | 142 V<br>2.5 s  | no trip         |  |  |
|             |         |               |           |               | 134 V<br>1.98 s | no trip         |  |  |
| O/V         | 253 V   | 0.5 s         | 253.9 V   | 0.504 s       | 249 V<br>5.0 s  | no trip         |  |  |
|             |         |               |           |               | 257 V<br>0.45 s | no trip         |  |  |

Note for Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

**Protection – Loss of Mains test:** For PV **Inverters** shall be tested in accordance with BS EN 62116. Other **Micro-generators** should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.9

| Test Power                               | 10%                              | 55%                              | 100%                             | 10%                               | 55%                               | 100%                              |
|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Balancing load<br>on islanded<br>network | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Limit is 0.5 s                | N/A                              | N/A                              | N/A                              | N/A                               | N/A                               | N/A                               |

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

| Test Power     | 10%        | 55%        | 100%       | 10%        | 55%        | 100%       |
|----------------|------------|------------|------------|------------|------------|------------|
| Balancing load | 95% of     | 95% of     | 95% of     | 105% of    | 105% of    | 105% of    |
| on islanded    | Registered | Registered | Registered | Registered | Registered | Registered |
| network        | Capacity   | Capacity   | Capacity   | Capacity   | Capacity   | Capacity   |

<sup>8</sup> See the note in A.2.2.4 if the suggested loading levels are below the minimum stable operating level. If alternative loading levels are chosen, the level should be indicated on the test form and the reason for not testing at 10%/55% of Registered Capacity should be stated. The additional comments box at the end of the loss of mains test sheet can be used for this.

<sup>9</sup> If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

| Positive Vector Shift | 49.0 Hz | +50 degrees  | no trip |
|-----------------------|---------|--------------|---------|
| Negative Vector Shift | 50.0 Hz | - 50 degrees | no trip |

**Protection – Frequency change, RoCoF Stability test:** The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

| Ramp range         | Test frequency ramp:    | Test Duration | Confirm no trip |
|--------------------|-------------------------|---------------|-----------------|
| 49.0 Hz to 51.0 Hz | +0.95 Hzs <sup>-1</sup> | 2.1 s         | no trip         |
| 51.0 Hz to 49.0 Hz | -0.95 Hzs <sup>-1</sup> | 2.1 s         | no trip         |

**Limited Frequency Sensitive Mode** — **Overfrequency test:** This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.2 Hz and **Droop** of 4%. The measurement tolerances are contained in A.1.2.8.

| Test sequence at Registered Capacity >80%      | Measured Active Power Output | Frequency | Primary Power Source                     | Active<br>Power<br>Gradient |
|------------------------------------------------|------------------------------|-----------|------------------------------------------|-----------------------------|
| Step a) 50.00 Hz ±0.01 Hz                      | 3672W                        | 50Hz      | 380V/3800W                               | 99.78%                      |
| Step b) 50.25 Hz ±0.05 Hz                      | 3579W                        | 50.25Hz   | e sa execusivos se subse                 | 97.26%                      |
| Step c) 50.70 Hz ±0.10 Hz                      | 2751W                        | 50.7Hz    |                                          | 74.76%                      |
| Step d) 51.15 Hz ±0.05 Hz                      | 1923W                        | 51.15Hz   | F238899724                               | 52.26%                      |
| Step e) 50.70 Hz ±0.10 Hz                      | 2752W                        | 50.7Hz    |                                          | 74.78%                      |
| Step f) 50.25 Hz ±0.05 Hz                      | 3582W                        | 50.25Hz   |                                          | 97.34%                      |
| Step g) 50.00 Hz ±0.01 Hz                      | 3669W                        | 50Hz      |                                          | 99.70%                      |
| Test sequence at Registered Capacity 40% - 60% | Measured Active Power Output | Frequency | Primary Power Source                     | Active<br>Power<br>Gradient |
| Step a) 50.00 Hz ±0.01 Hz                      | 1867W                        | 50Hz      | 380V/3800W                               | 50.73%                      |
| Step b) 50.25 Hz ±0.05 Hz                      | 1775W                        | 50.25Hz   |                                          | 48.23%                      |
| Step c) 50.70 Hz ±0.10 Hz                      | 947W                         | 50.7Hz    |                                          | 25.73%                      |
| Step d) 51.15 Hz ±0.05 Hz                      | 117W                         | 51.15Hz   |                                          | 3.18%                       |
| Step e) 50.70 Hz ±0.10 Hz                      | 945W                         | 50.7Hz    | Ma and a contract throughout an economic | 25.68%                      |
| Step f) 50.25 Hz ±0.05 Hz                      | 1777W                        | 50.25Hz   |                                          | 48.29%                      |
| Step g) 50.00 Hz ±0.01 Hz                      | 1867W                        | 50Hz      |                                          | 50.71%                      |

| Test sequence                                | Measured Active Power Output | Frequency | Primary power source |
|----------------------------------------------|------------------------------|-----------|----------------------|
| Test a) 50 Hz ± 0.01 Hz                      | 3680W                        | 50Hz      | 3800W                |
| Test b) Point between 49.5 Hz<br>and 49.6 Hz | 3680W                        | 49.5Hz    | 3800W                |
| Test c) Point between 47.5 Hz<br>and 47.6 Hz | 3680W                        | 47.55Hz   | 3800W                |

NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes

## Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 60 s for restoration of voltage and frequency to within the stage 1 settings of Table 2.

| Time delay setting        | Measured<br>delay              |            |                    | no reconnection stage 1 limits of |                | quency is brought to |
|---------------------------|--------------------------------|------------|--------------------|-----------------------------------|----------------|----------------------|
| 60S                       | 82S                            | CONTRACTOR | At 257.0 V         | At 191.5 V                        | At 47.9 Hz     | At 52.1 Hz           |
| Confirmation generator of | n that the<br>loes not re-conr | Micro-     | Not re-<br>connect | not re-connect                    | not re-connect | not re-connect       |

**Fault level contribution**: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if the fault contribution is zero.

| For machines with electro-magnet                         | For Inverter output |       |                  |        |            |
|----------------------------------------------------------|---------------------|-------|------------------|--------|------------|
| Parameter                                                | Symbol              | Value | Time after fault | Volts  | Amps       |
| Peak Short Circuit current                               | ip                  | N/A   | 20 ms            | 27V    | 12A        |
| Initial Value of aperiodic current                       | Α                   | N/A   | 100 ms           | 23V    | 0.13A      |
| Initial symmetrical short-circuit current*               | I <sub>k</sub>      | N/A   | 250 ms           | 22V    | 0.12A      |
| Decaying (aperiodic) component of short circuit current* | İDC                 | N/A   | 500 ms           | 19V    | 0.12A      |
| Reactance/Resistance Ratio of source*                    | ×/ <sub>R</sub>     | N/A   | Time to trip     | 0.504s | In seconds |

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

<sup>\*</sup> Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

| Logic Interface (input port)                                                                                                                                                                                                                |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Confirm that an input port is provided and can be used to reduce the <b>Active Power</b> output to zero                                                                                                                                     | Yes |
| Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or <b>DC</b> signal (the additional comments box below can be used)                                                                                     | Yes |
| Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).                                                                                                             | N/A |
| It has been verified that in the event of the solid state switching device failing to disconnect the <b>Micro-generator</b> , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.         |     |
| Cyber security                                                                                                                                                                                                                              |     |
| Confirm that the <b>Manufacturer</b> or <b>Installer</b> of the <b>Micro-generator</b> has provided a statement describing how the <b>Micro-generator</b> has been designed to comply with cyber security requirements, as detailed in 9.7. | Yes |
| Additional comments                                                                                                                                                                                                                         |     |

## Logic Interface (input port):

the logic interface will take the form of a simple binary output. When the switch is opened the Microgenerator can operate normally. When the switch is closed the Microgenerator will reduce its Active Power to zero within 5 s. The signal from the Microgenerator that is being switched is DC 5 V.

## Cyber security:

The inverter complies with the Cyber Security requirement of "Distributed Energy Resources – Cyber Security Connection Guidance" as a 'base line' and 'small' DER

The cyber security approach is including but not limited to below,

- 1. The data centers are hosted on Amazon Cloud Platform servers as private cloud services.
- 2. Amazon offers 'Amazon GuardDuty', which is designed to detect malware deployed on instances or container workloads running Amazon EC2, adds file scanning capabilities to workloads that use Amazon EBS volumes to detect malware, and also integrated with AWS Security Center.
- 3. All cloud service require a specified user name and password for access and are replaced periodically
- 4. The management interface is not provided externally.
- 5. HTTPS is used for Web and API, and TLS is used for device communication links.
- 6. MD5 password encryption is used for transmission.
- 7. All operating entities will be recorded including the IP address and account.
- 8. All static data must have an authorized TOKEN to access.
- 9. All remote access data must be provided with an authorized TOKEN.
- 10. There is a communication reconnection mechanism to ensure reliable communication between the device and the server.
- 11. The causes of accidents and the maintenances are recorded.
- 12. All operators have individual user IDs and their own passwords with limited authority to their own DER.
- 13. Unused physical ports are disabled
- 14. The system cannot directly browse or access email addresses.